DEPARTMENT: MECHANICAL ENGINEERING	
COURSE #: EML 5152, 3 credits	COURSE TITLE: Fundamentals of Heat Transfer
TYPE COURSE: Core Track: Thermal Fluids	TERMS OFFERED: Fall
CATALOG DESCRIPTION: This course is intended to develop an in-depth understanding of the mechanisms and methods of conduction and radiation heat transfer. This will include learning about the fundamental aspects of heat conduction and radiation and methods of applying the theory in practical problems.	PREREQUISITES: Thermal Fluids I and II (EML 3015 & 3016); Analysis in Mechanical Engineering (EML5060); or equivalent graduate standing
AREA COORDINATOR: Dr. RESPONSIBLE FACULTY: Dr. Wei Guo INSTRUCTOR OF RECORD: Dr. Wei Guo Magnet Lab, A244 (850) 644-3980 wguo@magnet.fsu.edu Office Hours: To be announced	CLASS SCHEDULE: Class: Twice weekly for 1 hr. and 15 min. Lab: None
 TEXTBOOKS/REQUIRED MATERIAL: 1. Heat Conduction, 4th Ed., Taylor & Francis, 1993, by S. Kalac and Y. Yener. 2. Radiation Heat Transfer, Oxford University Press Inc, 2000, by H.R.N. Jones. References, Additional Resources: 1. Incropera and DeWitt, Fundamentals of Heat Transfer 	SCIENCE/DESIGN (%): the class is lecture format
 COURSE TOPICS: The topics to be covered includes (not necessarily in the order shown) 1. Review of Heat Transfer Fundamentals Conduction heat transfer Convection heat transfer Radiation heat transfer Radiation heat transfer 2. Steady conduction heat transfer Fourier's Law 1D conduction 2D and 3D conduction Numerical methods 3. Time dependent conduction heat transfer Diffusion equation 1D analytic solutions 2D and 3D numerical methods 4. Radiation heat transfer Stefan-Boltzmann law Emissivity & view factors Multilayer shielding 	ASSESSMENT TOOLS: 1. Homework problems (25%) 2. Attendance and performance (5%) 3. Two exams (40%) 4. Final (30%)

5. Combing cond	uction and radiation heat transfer
Course Objectives for FSU Curriculum File Syllabus	 At the end of the course the students are expected to 1. Overall Goal: To develop an in-depth understanding of conduction and radiation heat transfer 2. To learn about heat transfer modes in inhomogeneous media 3. To become familiar with numerical methods of solving conduction heat transfer problems in multi-dimensional systems 4. To become familiar with analytical methods of solving conduction heat transfer 5. To learn how to solve time dependent conduction heat transfer problems 6. To learn how to analyze heat transfer by radiation in a variety of geometries and configurations 7. To learn to solve combined conduction and radiation heat transfer problems
Justification for addition or change	N/A
Level of computer usag Modes of Instruction: Core Curriculum Cour Availability to other M	ge:NoneElementaryIntermediate ☑AdvancedLecture ☑Lab □DISDiscussion ☑Otherrse:Yes☑Nolajors:YesNo
COURSE OBJECTIVES*	 a. To develop an in-depth understanding of conduction and radiation heat transfer b. To learn about heat transfer modes in inhomogeneous media c. To become familiar with numerical methods of solving conduction heat transfer problems in multi-dimensional systems d. To become familiar with analytical methods of solving conduction heat transfer e. To learn how to solve time dependent conduction heat transfer problems f. To learn how to analyze heat transfer by radiation in a variety of geometries and configurations g. To learn to solve combined conduction and radiation heat transfer problems
COURSE OUTCOMES*	 Numbers shown in brackets refer to department Student Program Outcomes – An ability to apply knowledge of mathematics, calculus based science and engineering to mechanical engineering problems An ability to design thermal systems, components, or processes to meet desired needs An ability to identify, formulate, and solve heat transfer problems An ability to communicate effectively with written, oral, and visual means A recognition of the need for, and the ability to engage in life-long learning An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice