All-solid-state batteries (ASSBs) represent a promising advancement in electrochemical energy storage, with solid electrolytes (SEs) playing a crucial role. Sulfide and halide SEs have garnered substantial interest due to their distinct characteristics; sulfide SEs offer high ionic conductivity and stability with Li metal anodes, while halide SEs have better compatibility with high-voltage cathodes. This dissertation explores the structure-property relationship of mixed-anion frameworks in both sulfide- and halide-based SEs, aiming to fine-tune material structures and properties for enhanced battery performance.

Firstly, we delve into the transformation of Li₃PS₄ via the introduction of LiBr. ³¹P NMR unveils the emergence of a glassy PS_4^{3-} network interspersed with Br⁻. Solid-state NMR corroborates fast Li⁺ migration between PS_4^{3-} and Br⁻, with increased Li⁺ mobility. A more than four-fold enhancement in ionic conductivity is observed upon LiBr incorporation (1.06 mS cm⁻¹) into Li₃PS₄ (0.23 mS cm⁻¹) resulting from the reduction of the energy barrier and transitioning Li⁺ transport dimensionality from 2D to 3D. The compatibility of Li₃PS₄ with Li metal is improved alongside an increase in critical current density (CCD) from 0.34 mA cm⁻² to 0.50 mA cm⁻² while preserving the electrochemical stability window. ASSB cells with 3Li₃PS₄:LiBr as the SE and TiS₂ as the cathode active material (CAM) show robust high-rate and long-term cycling performance.

Secondly, we incorporated LiBr and LiI simultaneously in Li₃PS₄ as a mixed-halide strategy. We achieve a two-fold increase in conductivity using a one-step ball milling technique. Subsequent low-temperature sintering further enhances conductivity to 4.43 mS/cm with a low activation energy of 0.29 eV. Furthermore, we engineered a cell configuration with stable milled SE layers toward Li metal and a high-conductive sintered SE separator in the symmetric cell with which CCD further increases compared to individual separators.

In addition to sulfide-based SEs, Li-deficient lithium yttrium bromide, Li_{3-x}YBr_{6-x}, was prepared using the co-melting method. High-resolution X-ray diffraction and Rietveld refinement confirm the formation of the monoclinic structure with the *C2/m* space group with increased cation site disorder and polyhedral volume. Bond valence site energy calculations show the Li⁺ migration energy barrier from Li-deficiency. Ab-initio molecular dynamics simulations show the emergence of 3D-Li⁺ conduction. Solid-state NMR spectroscopy confirms the elimination of LiBr impurities and reveals increased Li-ion dynamics. An ionic conductivity of 4.49 mS cm⁻¹ and activation energy of 0.28 eV were achieved.

Furthermore, we synthesized a series of Li_{2.73}Ho_{1.09}Cl_{6-x}Br_x compounds using a solid-state co-melting approach. Crystal structure analysis revealed the presence of Li-ions in 2d octahedral sites of the *C2/m* space group for $x \ge 2$. Analysis shows highly disordered cation sites with mixed occupancy of Li/Ho. ⁶Li solid-state NMR revealed a highly disordered local Li environment, which increases with Br/Cl substitution. The significant improvement in room-temperature ionic conductivity from 0.45 mS cm⁻¹ for Li_{2.73}Ho_{1.09}Cl₆ to 3.79 mS cm⁻¹ for Li_{2.73}Ho_{1.09}Cl_{3.27}Br_{2.73} is achieved with a significant decrease in activation energy from 0.38 eV to 0.32 eV, respectively.

Further mixing anions and cations within a SE significantly enhances ionic conductivity by introducing controlled disorder at both cation and anion sites. This increases the system's configurational entropy and allows for the overlap of energy bands. Incorporating Mg²⁺ and Hf⁴⁺ into a Li₃ClBrI mixed-rock-salt structure results in a substantial increase in ionic conductivity, reaching 0.88 mS cm⁻¹ for Li_{1.54}Mg_{0.23}Hf_{0.17}Cl_{0.68}BrI. The enhanced conductivity is attributed to a nanoscale solid solution between the disordered rock-salt and spinel structure.

Moreover, introducing a mixed anion sublattice into cost-effective LiAlCl₄ through a simple one-step mechanochemical milling process led to a 22-fold increase in ionic conductivity – from 0.0083 mS cm⁻¹ to 0.18 mS cm⁻¹ for Li₂AlCl₃S. This improvement can be attributed to the formation of new Li sites, enabling efficient 3D Li⁺ transport. The strategy leverages the inherent disorder to modify the Li-sublattice locally, leading to broader lithium-ion site occupancies and enhanced ion dynamics through polyhedral edge sharing.

Mechanochemical milling of thiophosphate-based SEs combined with TiS₂ CAM produces a composite material that leverages both cationic (Ti^{3+/4+}) and anionic (S^{2-/n-}, where n<2) redox processes – resulting in ~2× enhancement in specific capacity. Catholytes containing mixed-anion SEs, especially with 3Li₃PS₄:LiBr, demonstrate better cycling performance compared to their mono-anion counterparts due to the improved ionic conductivity and thermodynamical stability.

In summary, this dissertation explores innovative compositional design, optimal synthesis environment, and characterization of mixed-anion SEs, in addition to the utilization of these SEs in ASSBs. Overall, this research provides valuable insights into the development and application of high-performance ASSBs, addressing challenges associated with SEs in energy storage.