ABSTRACT

In the digital era, smartphones are pivotal for documenting life events, frequently providing critical

evidence in judicial proceedings. Yet, the dispersion of this digital evidence across a multitude of

devices, coupled with its dissemination through social media, poses a significant challenge for law

enforcement agencies. The complexities of aggregating and scrutinizing such data are

compounded by the computational demands of extracting and preserving relevant media.

Additionally, the advent of deepfake technology has introduced sophisticated methods for

disseminating misinformation, enabling harassment and manipulation that threaten the integrity of

digital evidence.

This dissertation introduces the Blockchain-Based Decentralized Federated Learning Framework

for Digital Forensic Applications & Deepfake Detection (BFDD), a powerful tool specifically

designed to aid law enforcement agencies in authenticating digital evidence. The designed

Decentralized Application (Dapp) leverages a decentralized, federated learning framework to

streamline targeted data extraction and enhance the detection of deepfakes using machine learning,

thereby equipping digital forensic investigators with a robust tool for evidence verification. This

application is developed to address the growing challenges in digital forensics brought about by

generative AI and the proliferation of deepfakes. It seeks to enhance evidence authentication

techniques, thereby reinforcing the reliability of digital media in legal settings.

Keywords: Digital Forensics, Federated Learning, Blockchain, Deepfake, Machine Learning

12