Evanescent-mode-resonator-based and antenna-integrated wireless passive pressure sensors for harsh-environment applications

Haitao Chenga,∗, Gang Shaob, Siamak Ebadic, Xinhua Rend, Kyle Harrise,1, Jian Liue, Chengying Xuf, Linan Ang, Xun Gonga,∗∗

a Antenna, RF and Microwave Integrated (AMRI) System Laboratory, Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
b School of Materials Science & Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
c Intellectual Ventures, Bellevue, WA 98005, USA
d Motorola Mobility Inc., Libertyville, IL 60048, USA
e Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
f Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
g Advanced Materials Processing and Analysis Center (AMPAC), University of Central Florida, Orlando, FL 32816, USA

\textbf{A R T I C L E I N F O}

Article history:
Received 1 March 2014
Received in revised form 5 September 2014
Accepted 10 September 2014
Available online 22 September 2014

Keywords:
Evanescent-mode resonator
Harsh environment
Integrated antenna
Polymer-Derived Ceramic
Pressure sensor
Wireless passive sensor

\textbf{A B S T R A C T}

A wireless pressure sensor for high-temperature applications is demonstrated based on a microwave evanescent-mode cavity resonator. Cavity deformation resulting from applied external pressure can be detected by measuring the resonant frequency change of the sensor. Compact sensor size is achieved by loading a cylindrical post inside the cavity resonator. In addition, a patch antenna is seamlessly integrated with the pressure sensor, without additional volume. This pressure sensor is able to survive high temperatures by adopting passive structures and robust ceramic/metallic materials. Fully-dense siliconaluminum carbonitrile (SiAlCN) ceramic is used herein owing to its excellent thermal–mechanical properties and manufacturability as a Polymer-Derived Ceramic (PDC). A PDC soft-lithography technique is developed to fabricate the ceramic pressure sensor. In order to wirelessly interrogate the pressure sensor at high temperatures, a robust interrogation antenna is designed and fabricated with a wide fractional bandwidth. Finally, the cavity deformation of pressure sensor versus external pressure is measured at high temperatures up to 800 °C. The resonant frequency decreases from 11.75 to 11.56 GHz, when the applied external force on the sensor increases from 0 to 5 N at 800 °C.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Real-time pressure monitoring is essential for many harsh-environment applications, such as gas turbines for power generation. During turbine operations, there is an optimal pressure ratio to achieve the maximal thermal efficiency for a given temperature [1]. Pressures beyond or below the optimal value will result in a reduced thermal efficiency. Additionally, online monitoring of pressure inside a gas turbine is necessary for safe operations. Higher pressure ratios than the designed value could lead to compressor surge which results in flameout, or even serious damage to compressor blades. Therefore, in order to improve thermal efficiency and guarantee operational safety of gas turbines, pressure sensors are highly desirable inside combustion chambers. These sensors are required to reliably work in the harsh environment consisting of high temperatures (1000–1400 °C), high pressures (300–600 psi), and corrosive gases (containing sodium, vanadium, and sulfate). Pressure sensors with passive, wireless, and robust characteristics are highly desirable to survive this harsh environment.

For aforementioned applications, pressure sensors need to be passive due to the fact that semiconductor devices and circuits typically fail at temperatures above 600 °C [2,3]. Passive pressure sensors based on resistive [4,5] or capacitive [6,7] sensing mechanisms were proposed to survive high temperatures above 400 °C. However, wire interconnection is required to interrogate these sensors, which is main failure mechanism for gas turbine applications [8]. By using capacitive sensing mechanism and inductive coupling, pressure sensors were demonstrated wirelessly for high-temperature applications [9–11]. However, quality (Q) factors of...
The authors presented an evanescent-mode-resonator-based wireless passive pressure sensor design with integrated slot antenna to achieve compact size [15]. In this paper, we will use a similar evanescent-mode resonator structure [15] but employ an integrated patch antenna to enhance the sensing range. This integrated patch antenna also exhibits zero additional volume. The small size of the pressure sensor can minimize the adverse effects on the aerodynamic flow inside turbines or other devices. The proposed pressure sensor is made of high-temperature-stable materials including fully-dense SiAlCN and platinum, which have been proven to work reliably above 1000 °C [16–18]. This pressure sensor will be wirelessly interrogated by a high-temperature-stable antenna without the need of wire connections to the sensor.

The schematic of the pressure sensor structure and wireless interrogation mechanism is illustrated in Fig. 1. The resonant frequency \(f_r \) of the evanescent-mode resonator is determined by [19]:

\[
f_r = \frac{1}{2\pi \sqrt{L(c_p + c_r)}}
\]

where \(c_p \) represents parallel-plate capacitance between the sensor cap and the cylindrical post inside the cavity, \(c_r \) is the remaining fringing capacitance, and \(L \) is the equivalent inductance. \(c_p \) can be approximately given by:

\[
c_p = \frac{\varepsilon_0 A}{\text{gap}}
\]

where the top surface of the cylindrical post has an area of \(A \), and \(\text{gap} \) is the distance between the sensor cap and the post. With pressure being applied on the cavity, \(c_p \) increases with the reduced gap due to cavity deformation. Therefore, the pressure can be wirelessly monitored by measuring the change in \(f_r \). By adding the post structure in the cavity resonator as shown in Fig. 1, high sensitivity of the pressure sensor is achieved due to a small gap value [20]. It is worthy of mentioning that this type of evanescent-mode resonator has been also used for high-Q widely-tunable filters [21–24], owing to the merits of reduced size and high sensitivity.

2. Characterization of the fully-dense SiAlCN PDC

Structure material of the pressure sensor is Polymer-Derived Ceramic which exhibits excellent thermal-mechanical properties at high temperatures [16,17]. However, as a novel ceramic material, the dielectric properties at microwave frequency including dielectric constant and loss tangent were still unknown. Therefore, it is necessary to measure the dielectric properties of the fully-dense SiAlCN PDC before the sensor design and fabrication. Dielectric characterization is carried out by using the microwave cavity method presented in Ref. [18].

The fully-dense SiAlCN PDCs are synthesized by using 10% and 30% poly (melamine-co-formaldehyde) acylated solution (PVN, Sigma–Aldrich, St. Louis, MO) [25]. The SiAlCN PDC substrate is placed on a spacer inside a \(K_{10} \)-band waveguide cavity for dielectric characterization, as shown in Fig. 2. Then the dielectric constant and loss tangent of the SiAlCN PDC can be extracted from the resonant frequency and loaded Q factor of the waveguide cavity [18]. The resonant frequencies (loaded Q factors) for PDCs with 10% and 30% PVN are 9.793 GHz (1924) and 9.806 GHz (1299), respectively. The dielectric constant (loss tangent) for PDCs with 10% and 30% PVN are found to be 5.1 (0.01) and 6.3 (0.05), respectively. SiAlCN PDC with 10% PVN is selected to fabricate the sensor cap due to its lower dielectric loss. However, SiAlCN PDC with 30% PVN is used for sensor bottom since this composition can provide thick substrates without warping. Since the sensor bottom will be completely metalized using platinum, the loss inside the lossy PDC with 30% PVN will not affect the Q factor the pressure sensor.

3. Design of the pressure sensor and robust interrogation antenna

This wireless pressure sensor is designed for high-temperature applications, and therefore constraints from microwave resonator design, ceramic synthesis and fabrication limitation need to be carefully considered throughout the sensor design. A patch antenna is seamlessly integrated with the pressure sensor to receive the interrogation signal and transmit the sensor response. In addition, a robust interrogation antenna with sufficiently wide fractional bandwidth is developed in order to perform sensor measurements.
To verify the robustness under pressure, this pressure sensor was simulated in ANSYS Mechanical. As shown in Fig. 5(a), the deflection of the sensor cap is found to be 69.8 μm when the external pressure is 600 psi, which makes sure that no RF shorting will occur during sensor operation. In addition, the maximal stress in the sensor cap is simulated to be 298.6 MPa as shown in Fig. 5(b), which is much smaller than the UT of PDC. During this mechanical simulation, the Young’s modulus of the SiAlCN PDC is set as 100 GPa, and the bottom of the sensor is assumed to be flat, which corresponds to the case when the pressure sensor is mounted on a rigid surface. The sensor sensitivity can be calculated as 2.44 MHz/psi, by multiplying the frequency-deflection sensitivity shown in Fig. 4(b) with the deflection-pressure sensitivity shown in Fig. 5(a).

3.2. Design of the patch antenna coupled with the pressure sensor

A patch antenna is designed to be seamlessly integrated with the pressure sensor in order to facilitate the wireless interrogation and minimize size as shown in Fig. 6. The patch antenna is located on the top surface of the sensor cap and coupled to the pressure sensor though a rectangular slot etched inside the ground plane on the bottom of the sensor cap. Similar to the filter/antenna integration technique presented in Ref. [27], this integrated patch antenna occupies zero additional volume and exhibits close to 100% antenna efficiency.

The patch antenna is designed using the dielectric properties measured in Section 2. The patch length L_p and width W_p are found to be 5.4 and 7.1 mm, respectively at the resonant frequency of the pressure sensor, i.e., $f_r = 11.9$ GHz. It is noted that $e_r = 5.36$ (assuming 5% increase from $e_r = 5.1$ at room temperature) is used for the PDC with 10% PVN at 700 °C, based on the temperature-dependent dielectric properties of similar SiCN ceramics reported in Ref. [18].

The length of the coupling aperture L_c and location of the patch antenna X_p are then studied and optimized for maximum sensing range in HFSS. In order to carry out this parametric study, an X-band open-ended waveguide (OEWG) antenna with an aperture size of 22.86 mm × 10.16 mm is used to interrogate the pressure sensor as shown in Fig. 7(a). The dimensions of the pressure sensor can be found in Fig. 4(a). This OEWG antenna transmits a wide-band RF signal, which couples to the sensor through the integrated patch antenna. Only the frequency components close to the resonant frequency of the sensor resonate for many cycles and re-radiate back to the OEWG. By using a time-domain gating technique [28], the responses corresponding to the resonance inside the pressure sensor are isolated and identified by the network analyzer. OEWG antenna S_{11} versus L_c and X_p are plotted in Fig. 7(b) and (c), respectively. The peaks of the curves correspond to the resonant frequency of the pressure sensor. Finally, $L_c = 6$ mm and $X_p = 0.8$ mm are chosen to achieve a good compromise between the received signal strength and Q factor (which determines the sharpness of the peaks). During the antenna design, the width and location of the coupling aperture are fixed as $W_c = 0.5$ mm and $X_c = 2$ mm, respectively, to simplify the antenna design. The dimensions of the patch antenna and coupling aperture are summarized in Table 1. To verify that this wireless interrogation can detect the resonant frequency change of the sensor, simulated sensor responses versus different gap sizes are shown in Fig. 7(d). It is apparent that under different external pressures, the resonant frequency of the pressure sensor can be wirelessly detected.

3.3. Design of the robust interrogation antenna with wide bandwidth

Ideally, the wireless pressure sensor needs to be tested within a chamber with both high temperatures (up to 1000 °C) and high pressures (up to 600 psi). In addition, RF signals need to be sent

![Fig. 3. Flow chart to design the microwave pressure sensor.](image-url)
to the inside of the chamber in order to wireless interrogate the sensor. All these requirements call for very complicated and challenging measurement setup. In this paper, we will focus on the demonstration of the working mechanism of this novel wireless passive pressure sensors. Therefore, a measurement setup as shown in Fig. 8(a) is used instead. The temperature of the sensor is controlled by a heat pad under the pressure sensor. While the pressure on the sensor is applied with an alumina rod passing through the interrogator antenna. This simple setup allows us to emulate the sensor cavity deformation caused by ambient pressure change. It should be noted that the loading effect of the alumina rod on the resonant frequency of the pressure sensor is negligible, i.e. a slight frequency down shift of 0.0048 GHz at 11.9 GHz through HFSS simulations.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>W_p</th>
<th>L_p</th>
<th>W_a</th>
<th>L_a</th>
<th>X_a</th>
<th>X_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td>Patch width</td>
<td>Patch length</td>
<td>Coupling aperture width</td>
<td>Coupling aperture length</td>
<td>Coupling aperture with respect to the cavity center</td>
<td>Patch location with respect to the aperture</td>
</tr>
<tr>
<td>Values (mm)</td>
<td>7.1</td>
<td>5.4</td>
<td>0.5</td>
<td>6</td>
<td>2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 1: The dimensions of the patch antenna.
There are two requirements for the interrogation antenna: (1) it needs to be robust to survive high temperatures; (2) its fractional bandwidth should be wide enough to cover the entire frequency range of the pressure sensor for different pressures. A robust antenna to interrogate temperature sensor was proposed in Ref. [29], and it is able to survive high temperatures up to 1300 °C by using an alumina substrate and a platinum metal layer. Similarly, a robust antenna is designed herein for the pressure sensor measurement. As shown in Fig. 8(b), a tuning stub with CPW feeding is loaded inside the slot antenna to improve the antenna bandwidth.

A window is cut inside the antenna substrate, allowing the alumina rod to apply a force on the pressure sensor.

As shown in Fig. 9, the slot length L_s, slot width W_s, tuning-stub length L_t, and tuning-stub width W_t are studied to optimize the antenna bandwidth. It is noted that the spacing between the tuning stub and the slot edge is chosen as $s = 0.6$ mm. Fig. 9(a) shows that the upper bound of the antenna impedance matching bandwidth is increased for smaller L_s. So $L_s = 6.4$ mm is chosen for this antenna design. Then it is observed in Fig. 9(b) that the lower bound of the antenna impedance matching bandwidth is...
Fig. 9. Parameter study of (a) the slot length \(L_s \), (b) the slot width \(W_s \), (c) the tuning-stub width \(W_t \) and (d) the tuning-stub length \(L_t \) of the interrogation antenna.

Table 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameters</th>
<th>Values (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_s)</td>
<td>Feed width</td>
<td>2.5</td>
</tr>
<tr>
<td>(s)</td>
<td>Gap</td>
<td>0.63</td>
</tr>
<tr>
<td>(t)</td>
<td>Spacing</td>
<td>0.6</td>
</tr>
<tr>
<td>(W_t)</td>
<td>Tuning-stub width</td>
<td>5.6</td>
</tr>
<tr>
<td>(L_t)</td>
<td>Tuning-stub length</td>
<td>2.1</td>
</tr>
<tr>
<td>(W_t)</td>
<td>Slot width</td>
<td>8.5</td>
</tr>
<tr>
<td>(L_s)</td>
<td>Slot width</td>
<td>6.4</td>
</tr>
<tr>
<td>(G)</td>
<td>Ground size</td>
<td>22.9</td>
</tr>
<tr>
<td>(h)</td>
<td>Substrate thickness</td>
<td>0.635</td>
</tr>
<tr>
<td>(L_w)</td>
<td>Window length</td>
<td>2.5</td>
</tr>
<tr>
<td>(W_w)</td>
<td>Window width</td>
<td>4</td>
</tr>
</tbody>
</table>

The dimensions of the interrogation antenna.

determined by \(W_s \). Larger \(W_s \) leads to a wider antenna bandwidth but worse impedance matching. Therefore, \(W_s = 8.5 \) mm is used as the tradeoff between antenna bandwidth and impedance matching. Finally, the effects of \(W_t \) and \(L_t \) are studied and shown in Fig. 9(c) and (d), respectively. \(W_t = 5.6 \) mm and \(L_t = 2.1 \) mm are chosen for better impedance matching. The dimensions of the designed interrogation antenna are summarized in Table 2. The designed interrogation antenna exhibits a fractional bandwidth of 31% \((S_{11} \leq 10 \text{ dB}) \) at the center frequency of 12.1 GHz.

As shown in Fig. 8(a), an alumina rod with a cross-sectional area of 0.9 mm × 0.6 mm is inserted though the interrogation antenna. The loading effect of the alumina rod on resonant frequency of the interrogation antenna is also verified in HFSS simulations. It is observed that the center frequency of the interrogation antenna is decreased by 0.1 GHz while the antenna fractional bandwidth remains the same, which is still sufficient to cover the sensor responses.

4. Fabrication of the PDC pressure sensor and the robust interrogation antenna

In this section, the details of sensor fabrication using fully-dense PDC and platinum, as well as the interrogation antenna fabrication are presented.

4.1. Fabrication process of PDC pressure sensor

Commercially available preceramic precursor of polysilazane (HIT-1800, Kion, Huntington Valley, PA) was used as the PDC precursor. Aluminum-tri-sec-butoxide (ASB, Sigma–Aldrich, St Louis, MO) and poly (melamine-co-formaldehyde) acrylated solution (PVN, Sigma–Aldrich, St Louis, MO) were used as Al and N sources, respectively. Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxides (Irgacure 819, CibaSpecialty Chemicals Inc., Basel, Switzerland) was used as the photoinitiator. The detailed synthesis process was reported in Ref. [25].

PDCs with thickness above 500 μm typically exhibit cracks or warping [30,31]. To avoid this issue, a new PDC soft-lithography fabrication method is developed to realize PDC substrates up to 1500-μm thick without the aforementioned problems.

The fabrication process is outlined in Fig. 10 and described as follows. (1) Teflon was chosen as the mold material due to its non-stick and easy-to-machine properties. As shown in Fig. 10(a), a Teflon sheet was machined by micromilling using a three-axis machine tool with motion accuracy of 0.25 μm [32]. In order to compensate for the 31% dimensional shrinkage during ceramic sintering, the Teflon mold dimensions were proportionally enlarged in machining. For easier demoulding, silicon spray lubricant (3-IN-ONE 10041) was applied on the Teflon mold before the soft-lithography process. (2) The PDC precursor in liquid phase
was filled into the Teflon mold as shown in Fig. 10(b). A quartz glass was then used to cover the top of the PDC precursor. Similarly, to avoid adhesion, a thin layer of Teflon film was attached to the quartz glass. (3) As shown in Fig. 10(c), the PDC precursor was exposed to UV light (Newport 66923) for 10 min at ambient atmosphere environment. After the lithography, the liquid ceramic precursor consisting of photo initiator was transformed into solid polymer. Then the polymer was removed from the Teflon mold, as shown in Fig. 10(d). (4) Pre-pyrolysis was carried out at 150 °C for twenty-four hours in order to remove the residual stress which was generated during the fabrication process of molding and cross-linking of the polymer. After that, the polymer was pyrolyzed at 1000 °C for four hours and converted to a fully-dense SiAlCN ceramic, as shown in Fig. 10(e). (5) Fig. 10(f) shows the pressure sensor bottom before and after PDC sintering. Similarly, the sensor cap was fabricated with a thickness of 490 μm which is smaller than the design value of 500 μm due to fabrication tolerance.

Fig. 11. Fabricated PDC cavities. (a) Top view and (b) 3-D profile of the PDC sensor bottom after the platinum metallization. (c) Cavity dimensions after fabrication.
After the PDC machining, a thin layer of platinum was metallized on the PDC sensor bottom, which is necessary to form a microwave cavity resonator. This platinum metallization process was also used to fabricate robust antennas [29] and temperature sensors [33]. Platinum paste (ESL 5542) was applied to the PDC surface, and then dried for 2 min at 110 °C. After that, the platinum paste was sintered at 1000 °C for 10 min with a ramping rate of 10 °C/min. The platinum paste was repeatedly applied for three times to form a thickness of approximately 25 μm without voids. Fig. 11(a) shows the sensor bottom after the platinum metallization. A 3-D profile of the sensor bottom was measured by using a digital microscope (KEYENCE VHX-1000) and shown in Fig. 11(b). The dimensions of the metallized cavity are summarized in Fig. 11(c).

In the next step, platinum is patterned on both bottom and top surfaces of PDC sensor cap. As shown in Fig. 12(a), the PDC bottom is uniformly metallized to form the ground plane of patch antenna, except for the rectangular coupling aperture. In addition, the rectangular patch antenna is patterned and shown in Fig. 12(b). It should be noted that this platinum pattern process is also used to fabricate the robust interrogation antenna, which will be discussed in Section 4.3. At last, the PDC sensor bottom and cap are bonded with a thin layer of platinum paste after a high-temperature sintering process and shown in Fig. 12(c).

4.2. Fabrication of the robust interrogation antenna

The robust interrogation antenna was fabricated by using alumina substrate and platinum layer in order to survive high temperatures. The fabrication process to pattern the platinum film was specially developed and shown in Fig. 13. (1) The antenna layout was printed on a transfer paper by using a laser printer with a printing resolution of 1200 dpi as shown in Fig. 13(a). (2) A window with dimensions of 2.5 mm × 4 mm was cut on an alumina substrate by using laser machining (Laserage Technology Corporation) as shown in Fig. 13(b). (3) The transfer paper was taped on the alumina substrate, while the antenna layout was aligned with the window on the alumina substrate. After a thermal compression process by using a thermal laminator, the antenna layout on the transfer paper was transferred to the alumina substrate as shown in Fig. 13(c). (4) Platinum paste (ESL 5542) was applied based on the transferred antenna layout under a microscope. Then the paste was dried by using a hotplate for 2 min at 110 °C as shown in Fig. 13(d). (5) Fig. 13(e) shows the antenna after the high-temperature sintering process for platinum.

In order to measure the interrogation antenna, Thru-Reflect-Line (TRL) calibration was used to provide accurate antenna characterization at the reference plane as shown in Fig. 14 [34]. The measured fractional bandwidth of 31% and center frequency of
11.8 GHz closely match the simulated bandwidth of 31% and center frequency of 12.1 GHz, as shown in Fig. 14. The fractional bandwidth and center frequency are the two most important factors for sensor interrogation. The measured S_{11} has multiple ripples in the antenna bandwidth due to impedance discontinuity in the long CPW line.

5. Measurement setup and results

A measurement setup is custom-made for the pressure measurement at high temperatures as shown in Fig. 15(a). A heat pad (MicroPyretics Heaters International Inc.) is used to control the temperature of the pressure sensor under test with feedback from a K-type thermocouple (Omega HH11). A force is applied on the pressure sensor by using an alumina rod. In addition, a force gauge (Dillon GL050), attached on a test stand (Dillon CT), is used to provide precise control of applied force on the pressure sensor. Alumina sheets and alumina wool are covered on the heat pad to stabilize the temperature. Fig. 15(b) illustrates the detailed view of the pressure sensor under test. The alumina rod passes through the open window on the antenna substrate. Therefore, a force is applied via the alumina rod on the pressure sensor.

Using this measurement setup, the pressure and temperature can be independently and simultaneously applied to the pressure sensor with precise control. Therefore, the change of the pressure sensor f_r due to the deflection of the sensor cap can be characterized at each temperature and applied force. This real-time measurement is performed with the Agilent 40-GHz PNA-L after time-domain gating [28].

The pressure sensor is measured at different temperatures up to 800 °C with various forces up to 5 N. The measured resonant frequency f_r is plotted in Fig. 16(a) for different temperatures and forces. It is observed that the f_r without applied force at room temperature is 12.2 GHz which is close to the simulated frequency of 11.9 GHz. In addition, the resonant frequency f_r decreases with the increasing applied force in a quasi-linear fashion due to reduced gap dimension. For example, the resonant frequency is reduced from 11.75 to 11.56 GHz when the external force increases from 0 to 5 N at 800 °C. It should be noted that the resonant frequency f_r is also affected by the temperature as shown in Fig. 16(a). This can be caused by multiple physics mechanisms such as cavity deformation due to material expansion, different thermal expansion coefficients in the cap and bottom structures, residual stress inside PDC and metals. HFSS simulations reveal that the dielectric constant change from 25 to 800 °C contributes approximately 10% of the overall frequency shift. Therefore, a temperature sensor is necessary for pressure sensor application to calibrate the frequency drift due to the temperature effect. The Q factor of the pressure sensor under 5-N loading decreases from 84.4 to 41.4 when the temperature increases from 25 to 800 °C. The maximum wireless sensing range between the interrogation antenna and the pressure sensor depends on both temperature and pressure of the sensor, which correspond to different Q factors. The maximum sensing range is approximately 15 mm. This range is reduced when the temperature and pressure are raised. It is noted that a network analyzer (with limited power and dynamic range) is used for the measurement. The wireless sensing range is 10 mm in order to obtain strong resonance peaks from the sensor. This sensing range could be significantly increased by using customized amplification circuits. The sensor response above 800 °C is not detectable, possibly due to the increased metallic loss of the platinum layer and dielectric loss of the PDC substrate. During the measurement when the applied force was above 10 N, cracks were observed inside the sensor cap. Therefore, pressure sensor measurements were conducted for external force between 0 and 5 N to collect repeatable responses.

By combining the sensitivity analysis in Fig. 4(b) and the f_r change in Fig. 16(a), the sensor cap deflection versus applied force at different temperatures are calculated and plotted in Fig. 16(b). The maximal deflection of 11.6 μm due to the external force of 5 N is much smaller than the designed 69.8 μm as shown in Fig. 5(a). In addition, Fig. 16(b) shows that at higher temperatures, larger deflection occurs for the same amount of change in the applied force.
force, which implies that the sensor structure becomes less stiff. This can be due to the change in the Young's modulus of PDC and platinum layer. In addition, the aforementioned cavity deformation can also affect this sensitivity change.

Several pressure sensors for harsh-environment applications are summarized in Table 3. It can be observed that much higher sensor sensitivity is achieved by using the evanescent-mode resonator, compared with other pressure sensors based on LC resonators. In addition, the sensor proposed in this paper is able to work up to 800 °C due to the high Q factors. It should be noted that the sensor deformation in this paper is obtained with an external force instead of pressure.

<table>
<thead>
<tr>
<th>Working mechanism</th>
<th>Sensor materials</th>
<th>Highest working temperature (°C)</th>
<th>Highest working pressure (psi)</th>
<th>Sensitivity (MHz/psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[9–11] LC resonator</td>
<td>Low-temperature co-fired ceramic and silver</td>
<td>400</td>
<td>101.5</td>
<td>0.0097</td>
</tr>
<tr>
<td>[9–11] LC resonator</td>
<td>Low-temperature co-fired ceramic and silver</td>
<td>600</td>
<td>52.2</td>
<td>0.024</td>
</tr>
<tr>
<td>[9–11] LC resonator</td>
<td>High-temperature co-fired ceramics and platinum</td>
<td>600</td>
<td>43.5</td>
<td>0.059</td>
</tr>
<tr>
<td>This work</td>
<td>Evanescent-mode resonator</td>
<td>PDC and platinum</td>
<td>800</td>
<td>77.9</td>
</tr>
</tbody>
</table>

It is noted that the pressure applied to the sensor is through a dielectric rod not ambient gas. Therefore, the actual highest working pressure under ambient gas could be different.

6. Conclusion and discussion

In this paper, we successfully demonstrated a wireless passive pressure sensor up to 800 °C, owing to the robust PDC material and high-Q evanescent-mode resonator structure. This pressure sensor is compact by using an integrated patch antenna. In addition, further studies will be conducted in PDC material synthesis to reduce loss at high temperatures, thereby increasing the work temperatures of the pressure sensor above 1000 °C. Integrating a wireless temperature sensor [33] with the pressure sensor will calibrate the frequency shift. A wireless sensor test setup with ambient high temperatures and high pressures will be constructed to measure these pressure sensors.

Acknowledgment

The authors acknowledge the support from US Department of Energy under Grant DE-FE0001241.

References

Haitao Cheng received the B.S. degree in electrical engineering from University of Electronic Science and Technology of China (UESTC), Chengdu, China, and the M.S. degree in microelectronics from Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China (CAS), in 2006 and 2009, respectively. He received the Ph.D. degree in electrical engineering from University of Central Florida (UCF). His research interests include wireless passive sensors, high-Q resonators and filters, and phased arrays. He has served as a reviewer for several journals, including IEEE Transactions on Antennas and Propagation, and IEEE Trans. Microw. Theory Tech. He is currently the faculty in School of Materials Science and Engineering, Zhengzhou University (China). His research interests include materials for high temperature sensors, polymer-derived ceramics (PDCs), micro/nano fabrication, MEMS, multifunctional properties of PDC for sensing applications in harsh environment.

Biographies

G. Shao was born in Meihekou, China, in September 1981. He received his Ph.D. degree in Department of Materials Science and Engineering from University of Central Florida, Orlando, USA, in 2013. Currently, he is a faculty in School of Materials Science and Engineering, Zhengzhou University (China). His research interests include materials for high temperature sensors, polymer-derived ceramics (PDCs), micro/nano fabrication, MEMS, multifunctional properties of PDC for sensing applications in harsh environment.

Siamak Ebadi received the B.S. degree from K. N. Toosi University of Technology (KNTU), Tehran, Iran, in 2003 and the M.S. and Ph.D. degrees from Tarbiat Modares University (TMU), Tehran, Iran, in 2005 and 2009, respectively, all in electrical engineering. He is currently with the Metamaterials Commercialization Center (MCC) at Intellectual Ventures, Bellevue, WA, performing translational research on new applications of Metamaterials in RF, Electromagnetics and Antennas. Prior to joining IV, he was with Antennas, RF and Microwave Integrated Systems (ARMI) laboratory at the department of Electrical Engineering and Computer Science (ECECS), University of Central Florida (UCF) from 2010 to 2012 as a postdoctoral research associate where he conducted research on wireless high-temperature sensors and reconfigurable phased array and reflectarray antennas. In 2008, he was involved in the European Commission’s Agile Reflectarray Antennas for Security and Communications (ARASCOM) project designing reconfigurable reflectarray antennas as a researcher at University of Perugia, Italy. His research interests include different fields of antenna design and electromagnetics including Metamaterials, phased array, slot array and reflectarray antennas as well as high-temperature wireless sensors. Siamak Ebadi is a member of IEEE Antennas and Propagation (AP) and Microwave Theory and Technique (MTT) societies. He is currently the chair of AP/MTT/ED chapter in Seattle and held the chair position for AP/MTT chapter in Orlando, Florida from 2010 to 2012. He has been a reviewer for IEEE Antennas and Wireless Propagation Letters (AWPL), IEEE Transactions on Antennas & Propagation (TAP), IEEE Antennas and Propagation Society (AP-S) Magazine, IEEE Transaction on Microwave Theory and Techniques (IEEE Trans. Microw Theory Tech., (MTT)), IEEE Wireless Communications Letters, and Elsevier International Journal of Electronics and Communications. He has been on the steering committee of IEEE Wireless and Microwave Technology Conference (Wamicon) 2012, IEEE AP-USRI 2013 conference and IEEE International Microwave Symposium (IMS) 2014.

Xinhu Ren (S’06) received the B.S. degree in electrical engineering from the University of Science and Technology of China, Hefei, China, in 2006, and the Ph.D. degree in electrical engineering from the University of Central Florida, Orlando, FL, in 2012. He was a graduate research assistant in the Antenna, RF & Microwave Integrated Systems Laboratory at the University of Central Florida, where he was involved with developing wireless passive microsensors for high-temperature applications. He is currently a Sr. Staff RF Engineer at Motorola Mobility, Chicago, IL. His research interests include electrically small antennas, wireless microwave sensors, and RF front-ends.

Chengying Xu received the Ph.D. in 2006 in mechanical engineering from Purdue University, U.S.A., and the M.S. in mechanical engineering and automation from Beijing University of Aeronautics and Astronautics, China. She currently is an assistant professor at the Florida State University, Tallahassee, Florida. Her research interests include high temperature sensor design, intelligent systems and control theory, manufacturing of advanced materials. Dr. Xu has co-authored a textbook: Intelligent Systems: Modeling, Optimization and Control (CRC Press, 2008, 433 pages) and four book chapters. She has authored and coauthored more than 30 journal papers and 30 refereed conference proceedings. She has served many times in IEEE and the American Society for Engineering Education (ASEE) as a reviewer.

Kyle Harris graduated from the University of Central Florida with a B.S. Mechanical Engineering and is currently working in Cupertino, CA. He has coauthored two papers and spoke at the NASA Thermal Fluids and Analysis Workshop 2013.

Jian Liu received the B.S. degree in mechanical engineering from the China University of Mining and Technology, Xuzhou, China, in 2006, and the M.S. and Ph.D. degrees in mechanical engineering from the University of Central Florida, Orlando, FL, in 2011 and 2012, respectively. He is currently a R&D Mechanical Engineer with Alcon Laboratories Inc., Fort Worth, TX.

as an organizing committee member and session co-chair for a number of national and international conferences. She also worked as an organizer for the Symposium Sensor Technology for the International Congress on Ceramics in Japan. She served as the Guest Editor for Transactions of the ASME, Journal of Micro- and Nano-Manufacturing, and has been an Associate Editor of the International Journal of Nanomanufacturing since 2008, and has been on the Board of Editor of Journal of Aviation and Aerospace Industry Manufacturing since 2010 and International Journal of Computational Materials Science and Surface Engineering since 2007.

L. An was born in Changchun, China, in May 1964. He received the Ph.D. degree in Materials Science and Engineering from Lehigh University in 1996. He was post-doc at Cornell University and University of Colorado at Boulder. He is currently full professor of Materials Science and Engineering Department at the University of Central Florida. His research interests include materials for high-temperature sensors, nanostructured materials and nanocomposites, polymer-derived ceramics, unique technology for materials processing and manufacturing, and mechanical behavior of advanced materials. Concerning this field of research he is responsible for developing materials for sensor applications.

Xun Gong (S’02-M’05-SM’11) received the B.S. and M.S. degrees in electrical engineering from FuDan University, Shanghai, P.R. China, in 1997 and 2000, respectively, and the Ph.D. degree in electrical engineering from The University of Michigan at Ann Arbor in 2005. He is currently an Associate Professor of Electrical Engineering and Computer Science (EECS) at University of Central Florida (UCF) and Director of the Antenna, RF and Microwave Integrated Systems (ARMI) Laboratory. He joined UCF as an assistant professor in 2005. He worked at Air Force Research Laboratory (AFRL) in Hanscom, MA in 2009 under the support of Air Force Office of Scientific Research (AFOSR) Summer Faculty Fellowship Program (SFFP). He was with the Birck Nanotechnology Center at Purdue University, West Lafayette, IN, as a Post-Doctoral Research Associate in 2005. His research interests include microwave passive components and filters, sensors, antennas and arrays, flexible electronics, and packaging. Dr. Gong has served on the Editorial Boards of IEEE Transactions on Microwave Theory and Techniques (TMTT), IEEE Transactions on Antennas and Propagation (TAP), IEEE Microwave and Wireless Component Letters (MWCL), and IEEE Antennas and Wireless Propagation Letters (AWPL). He is the associate editor of IEEE MWCL. He was the technical program committee (TPC) chair in the 2013 IEEE AP-S/URSI International Symposium and Operations chair in the 2014 IEEE MTT-S International Microwave Symposium (IMS). He was the general chair in the 2012 IEEE WAMICON. He was the IEEE AP/MTT Orlando Chapter Chair in 2007–2010. He has been the recipient of the NSF Faculty Early CAREER Award in 2003. He received the Research Incentive Award (RIA) at UCF in 2011. He was the recipient of the Teaching Incentive Program (TIP) Award at UCF in 2010. He received Outstanding Engineer Awards from IEEE Florida Council and Orlando Section, respectively, in 2009.